On some functional equation generalizing Cauchy's and d'Alembert's functional equations
نویسندگان
چکیده
منابع مشابه
the effect of functional/notional approach on the proficiency level of efl learners and its evaluation through functional test
in fact, this study focused on the following questions: 1. is there any difference between the effect of functional/notional approach and the structural approaches to language teaching on the proficiency test of efl learners? 2. can a rather innovative language test referred to as "functional test" ge devised so so to measure the proficiency test of efl learners, and thus be as much reliable an...
15 صفحه اولOn Hilbert Golab-Schinzel type functional equation
Let $X$ be a vector space over a field $K$ of real or complex numbers. We will prove the superstability of the following Go{l}c{a}b-Schinzel type equation$$f(x+g(x)y)=f(x)f(y), x,yin X,$$where $f,g:Xrightarrow K$ are unknown functions (satisfying some assumptions). Then we generalize the superstability result for this equation with values in the field of complex numbers to the case of an arbitr...
متن کاملSome Logarithmic Functional Equations
The functional equation f(y − x) − g(xy) = h (1/x− 1/y) is solved for general solution. The result is then applied to show that the three functional equations f(xy) = f(x)+f(y), f(y−x)−f(xy) = f(1/x−1/y) and f(y−x)−f(x)−f(y) = f(1/x−1/y) are equivalent. Finally, twice differentiable solution functions of the functional equation f(y − x) − g1(x) − g2(y) = h (1/x− 1/y) are determined.
متن کاملHyperstability of some functional equation on restricted domain: direct and fixed point methods
The study of stability problems of functional equations was motivated by a question of S.M. Ulam asked in 1940. The first result giving answer to this question is due to D.H. Hyers. Subsequently, his result was extended and generalized in several ways.We prove some hyperstability results for the equation g(ax+by)+g(cx+dy)=Ag(x)+Bg(y)on restricted domain. Namely, we show, under some weak natural...
متن کاملQuadratic $alpha$-functional equations
In this paper, we solve the quadratic $alpha$-functional equations $2f(x) + 2f(y) = f(x + y) + alpha^{-2}f(alpha(x-y)); (0.1)$ where $alpha$ is a fixed non-Archimedean number with $alpha^{-2}neq 3$. Using the fixed point method and the direct method, we prove the Hyers-Ulam stability of the quadratic $alpha$-functional equation (0.1) in non-Archimedean Banach spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Colloquium Mathematicum
سال: 1988
ISSN: 0010-1354,1730-6302
DOI: 10.4064/cm-55-1-169-178